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Within Asia, rice is a main source of nutrition and provides between 30 and 70%

of the daily calories for half the world’s population. The importance of rice

production demands an effective rice crop monitoring system to provide food

security for this region. Recent research has proven radar’s capabilities in rice

crop monitoring. Radar backscatter increases significantly during a short period

of vegetation growth, but large spatial variations in rice crop growth occur due to

shifting in the crop calendar. The significant increase in radar backscatter over a

short period of time can be used to differentiate rice fields from other land covers.

The inter-field variations can be used to derive information on local farmer

practices and to enhance rice field mapping and yield prediction. The rice crop

monitoring system developed in this project was based on these variations as

applied to a neural network classification. The system delineated rice production

areas for one wet and one dry season, and was able to extract information on rice

cultivation as a function of different planting dates. A minimum mapping

accuracy of 96% was achieved for both seasons. This information was then used

in a neural network-based yield model to predict rice yield on a regional basis for

the wet season. When the yields predicted by the neural network were compared

with government statistics, the result was a prediction accuracy of 94%.

1. Introduction

Rice forms the economic, cultural, and nutritional basis for many countries, making

this crop’s successful annual production of key significance to the world community.

Recent projections made by the International Rice Research Institute (1998) show

that demand for rice will increase by about 1.8% per year until 2025. This means

that over the next two decades, rice consumption will increase by approximately

40%. Most of this increased demand is occurring in Asian countries in response to a

population growth that is also expected to increase by as much as 44% over the same

time period, based on a 1.6% growth rate between 1980 and 1998 (The World Bank

Group 2000). Given that a rising population reduces the land available for

production, the only means of meeting this demand is by increasing yield per hectare

through improved varieties and cropping practices. Improvements in this area have

already resulted in potential yield increases from 3.5 metric tonnes (MT)/hectare to

as high as 10–11 MT/hectare in some regions (International Rice Research Institute

1998). Also, the introduction of new varieties has substantially reduced the length of

the rice growing cycle. Despite yield improvements, it seems likely that many South-

East Asian countries, such as Malaysia, the Philippines, and Vietnam, will not be
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able to grow enough rice to meet domestic needs. This situation raises severe

questions regarding food and economic security for these countries. An example of

these implications occurred in the Philippines when in 1995 an unexpectedly severe

rice shortage resulted in spiralling rice prices, such that local market prices rose 50%

above world prices (International Rice Research Institute 1997). Estimating shortfalls

and importing the difference to control domestic prices is now an important policy for

the government in the Philippines. This policy requires accurate and immediate

knowledge of potential rice production throughout the growth cycle, along with an

aggressive approach to increasing yield. Given the potential savings in monetary,

environmental, and human terms that could be realized by access to accurate

prediction of rice yields, the market for a rice growth monitoring service is substantial.

The major stumbling block in the development of an accurate rice monitoring

programme is to gather data required for forecasting. Use of remotely sensed data has

proven to be a very effective method of gathering this type of information for a wide

variety of crops around the world. Most of this work, however, has been done using

optical satellite data, which can be rendered ineffective under poor weather

conditions. Most rice production in South-East Asia occurs under monsoon

conditions and even the ‘dry season’ skies are often covered with haze and high-

level cloud. Synthetic Aperture Radar (SAR) images, on the other hand, are not

hindered by most weather conditions and will be able to provide imagery over the

entire crop growth cycle. Scientific evidence has demonstrated two key points in

regards to the potential use of SAR as part of a rice monitoring system. This research

has demonstrated a high correlation between radar backscatter and rice biomass, and

has established that fields under rice production can be accurately mapped based on

temporal variation in radar backscatter (Aschbacher et al. 1995, Brisco and Brown

1995, Kurosu et al. 1995, Le Toan et al. 1997, Ribbes and Le Toan 1999, Inoue et al.

2002). Rice fields exhibit a unique temporal backscatter signature over the growth

cycle of the crop. The increase in backscatter as the rice crop matures is primarily due

to the vegetation–water interaction. Backscatter increases approximately 8 dB from

the beginning of its growing cycle until maturity (Liew et al. 1998). With this unique

signature, SAR backscatter can be related to crop biomass and can be used to map

fields under rice production. Li et al. (2003) successfully mapped land cover with a

simple supervised classification of a RADARSAT-1 ScanSAR image acquired over

South China. The average accuracy for identifying rice fields was 90%.

Like most other crops, planting date varies among rice fields. The rice calendar is

significantly affected by temperature differences due to latitude (Li et al. 2003). The

resulting differences in planting dates create inter-field differences in crop growth

and, as a result, large variations in radar backscatter. These variations complicate

the use of SAR imagery for mapping rice fields. Le Toan et al. (1997) found that the

standard classification methods based on the similarity in the image intensity of rice

fields did not provide acceptable results. They proposed and tested a temporal

change measurement method to cope with inter-field variations. Liew et al. (1998)

used a similar approach to delineate and map areas under different rice cropping

systems in the Mekong River Delta, Vietnam. In their research, they created five

change index maps from seven ERS-2 images acquired during a rice production

season. By combining these five change index maps and using a 3 dB threshold, a

total of 243 possible classes could be formed. The final rice cropping systems were

created by merging the dominant change classes and discarding the minority classes.

Ribbes and Le Toan (1999) later applied a similar approach to RADARSAT-1 data.
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Based on the temporal change of the backscatter, rice fields were mapped to an 87%

level of accuracy.

Neural networks as a tool in the field of remote sensing have received

considerable attention since a new learning scheme was developed. The

principle of a back propagation of error learning algorithm was initially proposed

by Werbos (1974) and rediscovered independently by Parker (1985) and

Rumelhart et al. (1986). Since the early nineties, numerous researchers have

compared the performance of neural networks with conventional statistical

approaches to remote sensing applications. Benediktsson et al. (1990) evaluated

the two methods for multisource remote sensing data classification. They noted that

a neural network has great potential as a pattern recognition method for

multisource remotely sensed data because of the distribution-free nature of a neural

network. In addition, no prior knowledge is needed about the statistical

distributions of the classes in the data sources. Bischof et al. (1992), as well as

Paola and Schowengerdt (1995), compared methods for multispectral classification

of Landsat TM data and both found that, with proper training, a neural network

was able to perform better than the maximum likelihood classification. Foody et al.

(1995) and Chen (1996) used a neural network to classify agricultural crops from

synthetic aperture radar data and found that, in general, neural network

classifications were equal to or more accurate than those derived from the

discriminant analysis. Shao et al. (2001) used multitemporal RADARSAT-1 data

and a neural network classifier to map land cover in China. The accuracy of the rice

classification was 91%, 97% after post-classification filtering. Chen (1997) tested

different neural network structures and network parameters to monitor wheat crop

growth based upon RADARSAT-1 images and found that a two-layered neural

network (where the number of neurons in the first hidden layer is equal to, or greater

than, the input features and where the number of neurons in the second hidden layer

is neither close to that of the first hidden layer nor close to that of the output layer)

can provide better biomass detection on both training and testing data. The

experiment showed that the accuracy on training data increases as learning

iterations, learning rate, and momentum increase, whereas the accuracy on testing

data is more sensitive to the learning iterations than the changing of learning rate

and momentum.

In practical applications such as rice monitoring over an extended region, it is

usually impossible to acquire detailed ground data to cover all the variations, such

as rice cultivation time, variety, and management aspects. Over two years, in

partnership with the Philippine Rice Research Institute (PhilRice), an approach for

rice mapping was developed that combines change detection with neural networks.

This approach offers flexibility with respect to the requirement for ancillary data

and can be applied to a more extended area. Such an approach provides an

operational potential for rice field mapping. This paper describes the radar

backscatter patterns as a function of planting date and rice growth development, for

one wet and one dry growing season. For each of these growing seasons, the

performances of three approaches for rice mapping were tested for two sites in the

Philippines. These three approaches included a neural network, change detection,

and maximum likelihood classification. Based on these results, a new approach to

rice mapping is proposed comprising an integration of the change detection and

neural network methods. Finally, this paper investigates the prediction of rice yield

using a neural network.
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2. Data collection and processing

2.1 Study site

Two sites in the Philippines were used to develop and test the methodologies, one in

the vicinity of the city of Muñoz and the second near the city of Santo Domingo.

Both cities are located in the northern part of the province of Nueva Ecija,

approximately 147 kilometres north of Manila in the Philippines (figure 1). Santo

Domingo is south-west of Muñoz where PhilRice is located. The lands around both

Muñoz and Santo Domingo are mostly agricultural. The percentage of land devoted

to rice production in the two regions is approximately 45% and 66%, respectively.

Two rice production seasons per year are the common practice. The typical size of a

rice field is about 0.7 to 1.25 hectares. The terrain of these two regions is generally

flat, with slopes of between 0–3%. The soils are classified as La Paz Fine Sandy-

Loam, Antipolo Clay, and Quingua Silt-Loam.

The seasons in Nueva Ecija are denoted as dry (January–April) and wet (June–

September), with monthly rainfall around 30 mm and 370 mm, respectively. During

the dry season, rainfall is minimal and there are very few typhoons. Annual

temperatures range from 20uC to 35uC. Many farmers directly seed (hand

broadcast) their rice during the dry season as there is less risk of damage and the

cost is less compared to transplanting seedlings. The wet season is characterized by

frequent rain showers and typhoons. The fields are flooded for most of the season.

The heavy rain and strong winds cause substantial loss of seedlings and wash away

insecticides and fertilizers. Farmers try to minimize the impact of the typhoons by

transplanting rice seedlings rather than using direct seeding. Farmers that seed

directly usually experience lower yields at harvest.

Figure 1. Location of the study site within The Republic of the Philippines.
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2.2 Field data collection

The project covered two rice-growing seasons in 2001. The dry season covered

January to May 2001, and the wet season June to September 2001. A total of 56 rice

plots (fields) were used in each season. These plots were managed according to three

control schemes (A, B and C). Eighteen A plots were strictly managed with three

different rice varieties grown under optimal management strategies. Management

strategies were optimized for plot geometry, rice variety, time of planting, and water

management and these strategies were predefined by PhilRice prior to each crop

season. Each rice variety was replicated over six plots. Eighteen B plots consisted of

experimental, demonstration, and seed production plots that were utilized by the

researchers in PhilRice. Twenty C plots were selected from farmers’ fields in the

regions and the management of these plots was not controlled for the purposes of

this experiment. The impact on variations of crop calendar was assessed by

staggering the transplanting dates of Control A plots and by recording the

transplanting/seeding dates of all the other experimental plots. All the experimental

plots, except one B and four C plots, which were directly seeded, were transplanted

during the wet season. In the dry season, about one half of the plots were

transplanted, which included all the A plots, eight B plots, and two C plots.

Both field and sample data were collected from each plot. The field data were

collected periodically during each season and these data described general physical

characteristics, the management applied, the crop variety, and crop growth stages.

The sample data characterized changes in the crop during the growing season. The

collected sample data included plant density (plant stems/m2), plant height (cm), plat

dry and wet biomass (g), Leaf Area Index (LAI), water depth (cm) and temperature

(uC), and yield (kg/m2 and kg/ha). A destructive method was used to measure the

crop biomass and LAI. To establish wet and dry biomass, the plants were cut

around the root zone (at the water surface) in a 1 m2 area and weighed before and

after oven-drying for 24–48 hours at 100uC. The LAI was obtained by passing

sample leaves through a leaf area metre and then dividing the total leaf area by

ground area. Both grain yield and grain-to-straw ratio were measured by harvesting

crops from a 1 m2 area. The harvested samples were weighed and then threshed.

After threshing, the grains were weighed again to calculate the grain-to-straw ratio.

The threshed grains were sun dried for 5–8 hours. According to PhilRice’s standard,

unit grain yield (kg/m2) and grain yield per hectare (kg/ha) were recorded at 14%

moisture content. To characterize the crop condition for the entire plot, four

samples were collected from each plot and the average of the measurements from

these four samples was used to represent the rice growth of the entire field. Samples

were collected coincident with each SAR acquisition.

The boundaries of each plot and sampling location were recorded using a

GeoExplorer GPS unit. Daily weather data were also collected from three weather

stations near the experimental plots in Nueva Ecija.

2.3 Image acquisition and pre-processing

Since the rice fields are usually quite small, often less than one hectare,

RADARSAT-1 fine mode images were chosen for this project. The nominal

resolution of the fine mode RADARSAT-1 data was 8 m69 m (azimuth6range).

Before each season started, a detailed RADARSAT-1 image acquisition schedule

was planned under the following considerations:
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1. the schedule should be designed according to the staggered planting intervals

associated with Control A plots;

2. for each staggered interval, the first image should be acquired one or two days

before crop transplanting occurs;

3. the schedule should be consistent with the local farmers’ practices and should

address their cropping calendar; and

4. if possible, the images should have the same orbital specifications, with the

same incident angle and viewing direction, and the images should cover the

entire study area without requiring mosaicking.

In order to maintain the same orbital specifications, images must be acquired at a

24-day interval. Based on knowledge of the growth cycle, it was decided that this

image acquisition interval was too coarse to capture the rapid changes in the rice

growth, particularly early in the season. Thus, a shorter acquisition interval was

chosen (table 1).

This shorter interval meant that incident angles and look directions varied among

the images acquired; however, this mixture of images likely reflects the reality under

operational mapping conditions. The difference in incident angle between the two

fine mode products was approximately four degrees. Due to a RADARSAT-1

payload anomaly, the image on 11th February, 2001 was unrecoverable. Thus, the

backscatter for 11th February was interpolated using a 2nd order polynomial

function and all the available data. Two IRS 1C panchromatic scenes were also

acquired to facilitate the geo-referencing of all RADARSAT-1 images.

Image pre-processing included image geo-referencing, radar speckle reduction, and

radar backscatter extraction. Although the study region was relatively flat, all the

images were ortho-rectified with ground control points selected from 71 GPS points

and a digital elevation model (DEM). The DEM was created from scanned 1:50,000

topographic maps. With the help of the DEM, an average 1–1.5 pixel RMS accuracy

was achieved. A 565 gamma filter was used to reduce radar speckle, and average

radar backscatter was extracted for each plot from all the ortho-rectified images.

3. Temporal radar backscatter characteristics of rice

During its growth cycle, a rice plant completes three distinct phases, namely

vegetative, reproductive, and ripening. The vegetative phase is subdivided into

Table 1. RADARSAT-1 image acquisition schedules for the 2001 rice crop seasons.

Dry Season Wet Season

Date of
acquisition Mode Orbit

Date of
acquisition Mode Orbit

2001–01-Jan F1 Asc 2001–11-Jun F3 Asc
2001–06-Jan F1 Desc 2001–23-Jun F1 Desc
2001–18-Jan F3 Asc 2001–05-Jul F3 Asc
2001–30-Jan F1 Desc 2001–17-Jul F1 Desc
2001–11-Feb F3 (unusable) Asc 2001–29-Jul F3 Asc
2001–23-Feb F1 Desc 2001–10-Aug F1 Desc
2001–07-Mar F3 Asc 2001–22-Aug F3 Asc
2001–31-Mar F3 Asc 2001–03-Sep F1 Desc
2001–24-Apr F3 Asc 2001–15-Sep F3 Asc
2001–18-May F3 Asc 2001–09-Oct F3 Asc
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germination, early seedling growth, and tillering; the reproductive phase is

subdivided into the time before and after heading. The time after heading is better

known as the ripening period, which consists of the milky and maturity phases. Rice

growth is thus characterized by eight stages: tillering, end of tillering, panicle

initiation, booting, flowering, milking, maturity, and harvest. The three varieties of

rice grown in the experimental plots were Rc82 (early mature variety), IR64

(medium mature variety), and Rc18 (late mature variety). The growth period or

lifespan of these rice varieties is 110, 113, and 123 days, respectively.

Figure 2 provides the radar backscatter response to rice growth as a function of

rice variety (Rc82, IR64, Rc18) and rice cultivation date (early, middle, and late

transplanted). The three charts on the left illustrate the backscatter behaviour

during the dry season, and those on the right show the backscatter response during

the wet season. The bottom schematics provide an approximation of the rice growth

stages for the dry and wet seasons. The horizontal axis for all plots marks the days

after transplanting, demonstrating the relationship between radar backscatter and

the crop growth stages. In general, the response of the rice crops transplanted in the

dry season was more sensitive to a transplanting delay of 12 days (from early to late

January). For the rice transplanted in early January, lower backscatter was observed

for the ascending passes (F3) acquired at a shallower incident angle. The difference

in backscatter between the F1 (descending) and F3 (ascending) passes was less

pronounced at more advanced growth stages and for rice fields transplanted later in

the season. A smaller difference in backscatter was observed in the wet season when

late transplanted and early transplanted crops were compared. The crops took 3–4

days longer to complete each phase of vegetation, reproduction, and ripening in the

wet season compared to the dry season. Variations in backscatter as a function of

crop variety (Rc82, IR64, Rc18) were small.

Radar backscatter changed as the rice crop moved from one growth stage to the

next. Prior to transplanting, with a backscatter of approximately 216 dB, the

recorded radar signal was very low due to specular reflection from the flooded fields.

At this stage, rice fields were easily detected on the radar images because of the

significant backscatter difference between flooded areas and non-flooded areas.

During the vegetation phase, the radar backscatter increased. Volume scattering

from within the rice canopy, and multiple reflections between the plants and water

surface, resulted in an increase in backscatter from around 216 dB to approximately

28 dB in a 22–24 day period (figure 2). This is traditionally the stage for growth

monitoring. As the crop ripened, the plant water content decreased. A reduction in

backscatter correlated with a reduction in plant water content, with backscatter

decreasing from 28 dB to 210 dB. The backscatter reached a minimum prior to

harvest. This temporal backscatter pattern is unique to rice crops. Variations in

backscatter over the growing season for rice are much larger relative to any other

agricultural crop (Aschbacher et al. 1995). Retrieval of rice acreage exploits this

unique backscatter signature.

4. Estimating rice acreage

One objective of this project was to develop a rice mapping system to estimate, on a

regional basis, the acreage under rice production. Mapping rice fields is also a

fundamental step for growth monitoring and yield prediction. A key consideration

for rice mapping is the spatial variation in the timing of the crop vegetation phase.

This vegetation phase usually lasts 20–24 days (figure 2). Due to factors that include
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hydrology, temperature, rainfall pattern, and the availability of irrigation, farmers do

not plant their crops on the same date, resulting in inter-field variations. These

variations in planting date are reflected in variations in radar backscatter among fields

within a region. To identify rice fields, Le Toan et al. (1997) found that the standard

classification methods, which are based on the similarity in the image intensity, are not

appropriate. They proposed and tested a temporal change measurement method to

cope with inter-field variation due to differences in crop calendar, using ERS-2 SAR.

Liew et al. (1998) used a similar approach to create five threshold change index maps

from six ERS-2 SAR images to delineate area under rice production.

Figure 2. Radar backscatter as a function of rice variety (Rc82, IR64, Rc18) and
transplanting date (early, middle, late January and July).
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Neural network classification provides consistent and reliable results, given the

availability of appropriate ground data to train the network. However, within the

context of an operational rice mapping system, variations in the rice crop calendar

across a region would make it extremely difficult to acquire sufficient ground data to

characterize all rice fields. For example, in the regions centred on Muñoz and Santo

Domingo, the rice calendar during some wet seasons can span up to 70 days, as

some farmers plant their rice fields in early June, while others delay planting until

the middle of August. In this particular study, the ground data collected during the

vegetation phase covered a period of only 30 days. In order to map the rice

production area on a regional basis, given that the timing of the rice crop calendar

varies across a region, this project proposes a method that integrates a change

detection approach with a neural network classification. The results of four methods

for rice acreage mapping – change detection, neural network classification,

maximum likelihood classification, and an integrated change detection neural

network approach – are compared.

4.1 A change detection method for rice mapping

The change detection method was based on simple ratioing of two RADARSAT-1

images. Using this approach, rice fields were identified as a function of the degree of

change in backscatter (Dsu) between two images. A threshold value was identified

and pixels with a change value above this threshold were retained within the rice

class. The algorithm used in the ratioing process is as follows (Rignot and van Zyl

1993):

Ds0~20 � log Pj

�
Pi

� �
ð1Þ

where Pi and Pj represent the radar backscatter in amplitude from two consecutive

images, i and j. The output of the ratioing process was a difference image, expressed

in decibels. Positive values indicated that for the jth image, backscatter was higher

relative to the ith image. Negative values meant the reverse was true, and zero (or

close to zero) values meant that there was little or no difference in backscatter

between the two images.

In determining the threshold value, both SAR speckle and image registration

errors must be taken into consideration. The probability that a detected change is

false is related to the value of the threshold. A larger threshold tends to

underestimate the rice area, whereas a smaller threshold increases the probability

of false detection. For the data in this study, a threshold of ¡ 3 dB provided the best

compromise between over and under estimation. A 3 dB threshold was also used by

Ribbes and Le Toan (1999).

Since farmers do not plant their rice crop at the same time, one of the advantages

of the change detection approach is that this method permits the delineation of rice

fields cultivated at different times during a rice production season. By retrieving

information on cultivation date, knowledge is gained about farmers’ practices in the

region; information that is also needed for rice yield prediction.

4.2 A neural network method for rice mapping

Neural networks are computational models with the ability to ‘learn’ or to organize

data based on a parallel processing system (Erbek et al. 2004). In order for a neural

network to perform a task, such as image classification and modelling, a network
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has to go through a learning process to memorize the pattern and to learn the

relationship between cause and effect (Pao 1989). The performance of a neural

network depends on both the network structure as well as the learning parameters.

The number of layers and the number of neurons in each layer define the network

structure. The learning parameters include learning rate, momentum, and

convergence threshold (iterations). Learning rate and momentum play similar roles

in neural network learning. The larger the momentum and learning rate, the bigger

the step required to minimize the system error. However, a higher learning rate

affects the stability of the network training, thus a smaller learning rate and a larger

momentum were used in this experiment.

The choice of design of the network architecture and the values of the learning

rate parameters is not straightforward. There are no given rules for configuration of

the network. Usually, the best results are obtained by trial and error, although it is

impractical to try and test all combinations. In this study, a hierarchical procedure

was used to find the best network structure and combination of learning parameters.

Different neural networks were evaluated, in terms of the accuracy of rice field

mapping, in a smaller test area with 5126512 pixels. There were 24 rice fields, 6

fishponds, and 16 non-rice fields selected within this test area. The ground data were

processed on a field basis and were divided into a training (21) and test (25) set. Six

radar images from 1st January to 23rd February (table 1) were used in this analysis,

as the network input. No speckle filtering was applied. Different network structures

and training cycles (iterations) were first tested, with all other parameters held

constant. Once the structure and iterations were determined, only the learning rate

and momentum were varied. This exercise used the same training and test datasets

as those used to determine the network structure and number of iterations. Testing

results were evaluated in terms of the average mapping accuracy of each class.

Figure 3 presents the mapping accuracies for the test site, as a function of the

neural network structure and learning cycle. The legend indicates the number of

Figure 3. Rice mapping accuracies for various neural network structures and learning
cycles.
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neurons in each layer. A sequence of three numbers indicates a network with one

hidden layer and a sequence of four numbers represents a two hidden layer network.

For each sequence, the first and last numbers represent the number of neurons in

the input and output layers, respectively. The six input layers represent the

six RADARSAT-1 images. The three output layers include rice, non-rice, and

fishponds. The middle values give the number of neurons in each hidden layer. For

instance, 6-12-3 indicates that this is a one hidden layer neural network with 6, 12,

and 3 neurons in the input, hidden, and output layers. In contrast, 6-12-6-3

is a two hidden layer network with 12 and 6 neurons in each hidden layer.

With the exception of the structure 6-12-3-3, the mapping accuracy increased as

the learning cycle increased, reaching the highest accuracies at around 400 to 700

iterations. As the learning cycle continued to increase from 700 to 1000 iterations,

the mapping accuracy tended to be stable. There were two neural networks, 6-18-3

and 6-12-6-3, which out-performed the other networks. The selection of network 6-

12-6-3 was preferred as it produced the highest accuracy. The trend observed for the

6-12-6-3 network is desirable, since this structure will likely produce stable mapping

results in a relatively larger dynamic range of training time and will be easily

optimized. The network structure of 6-12-3-3 performed poorly. The difference

between the 6-12-6-3 and 6-12-3-3 structures is only the number of neurons in the

second hidden layer. This observation is consistent with the results obtained by

Chen (1997) for wheat crop monitoring. Chen (1997) reported that for a two-layer

neural network, the best results were obtained when the number of neurons in the

first hidden layer is greater than the input features and when the number of neurons

in the second hidden layer is neither close to that of the first hidden layer nor close to

that of the output layer.

4.3 Comparing mapping accuracies using a change detection, a neural network, and
an integrated approach

The accuracies of several classification methodologies for identifying rice fields were

assessed against ground data collected during the dry season. Results were

compared between the change detection and neural network approaches. In

addition, a new integrated approach is introduced and accuracy results are

presented. The mapping accuracies of these three methods were also compared to

results from a maximum likelihood classification (MLC).

The classifications were run for the same test site described in the previous section.

Due to the availability of ground data in this smaller test site, only the first six

images in the dry season (1st January to 23rd February in table 1) were used in

this comparison. A colour composite of three of the RADARSAT-1 images

(1st January, 18th January, and 18th February) is provided in figure 4(a). In

figure 4(b), the samples of the ground data were superimposed on the composite

image. Differences in the planting dates were reflected in differences in the radar

backscatter observed among the rice fields in the area. Rice fields with a bluish tone

were planted in early January; fields with a red to orange tone were planted in mid

to late February.

To train the neural network and the MLC, the ground data acquired in this

area were evenly divided into training and test sets. The test dataset was used to

evaluate the mapping accuracies for all four methods. For all methods, the results

were compared using input images with and without speckle filtering applied. Both

363 and 565 gamma filters were evaluated. Three classes or outputs were
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requested – rice, water features, and no-rice. The water features and no-rice were then
merged into a single no-rice class. A sieve filter, which merges smaller polygons with

neighbouring classes, was applied to all the mapping results. The size of the merged

polygon was set to 0.0075 hectares (3 pixels of RADARSAT-1 fine mode imagery).

For the change detection approach, five ratio images were created from the six

individual RADARSAT-1 images. The ratio images included: (1) 6th January/1st

January; (2) 18th January/6th January; (3) 30th January/18th January; (4) 11th

February/30th January; and (5) 23rd February/11th February. For each ratio image,

rice fields were identified using the ¡ 3 dB threshold. Finally, fields identified as rice
on each ratio image were merged into a single rice map. The results of the change

detection approach, with and without speckle filtering, are given in figure 5(a–c).

The classified images generated by a maximum likelihood classification (MLC)

are shown in figure 5(d–f). The neural network maintained the two hidden layer

structure (6-12-6-3) using the six RADARSAT-1 images as the inputs and

requesting the three output classes. The neural network maps are given in

figure 5(g–i). The networking training parameters were: momentum 0.9, learning

rate 0.1, and learning cycle 700.

Assessments of these three classification methodologies are listed in table 2 in
terms of the mapping accuracy and the Kappa coefficient. The average accuracy is

defined as average of the accuracies for each class, and the overall accuracy is a

similar average with the accuracy of each class weighted by the proportion of test

samples for that class. The Kappa coefficient accounts for errors of omission and

commission and the effects of chance agreement (Lillesand and Kiefer 2000). The

Kappa coefficient is thus considered a more robust indicator of classification

accuracy. With no speckle filtering applied, both the MLC and the neural network

achieved overall mapping accuracies of 91% and 92%, respectively. The change
detection performed poorly without a speckle filter, although the overall

classification accuracy improved once a filter was applied. However, application

(a) (b)

Figure 4. Colour composite of RADARSAT-1 images. (a) 1st January displayed as red,
18th January as green and 18th February as blue. (b) Composite image with a sample of the
training and testing sites overlaid.
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of a filter reduced the accuracy with which the change detection method identified

rice fields. A similar trend was observed in the MLC results. Application of a speckle

filter increased the accuracy of mapping non-rice fields, but decreased the accuracy

with which rice fields were identified. The neural network was superior to either

method, especially when a larger filter was applied. Without a filter, the classified

map produced by the neural network had an overall accuracy of 92%. When the six

input images were filtered using a 565 gamma filter, an overall accuracy of 99% was

achieved with the neural network approach.

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 5. Rice mapping results. Pink represents rice and blue non-rice. (a) Change detection
without filter; (b) change detection with 363 gamma filter; (c) change detection with 565
gamma filter; (d ) MLC without filter; (e) MLC with 363 gamma filter; (f ) MLC with 565
gamma filter; (g) neural network without filter; (h) neural network with 363 gamma filter;
(i) neural network with 565 gamma filter.
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The neural network classification out-performed both the change detection and

the maximum likelihood classification approaches. However, neural networks

require extensive and representative training data. Even within a relatively small site,

such as the one used here, the available ground data can be limited. But considering

much broader regions, where planting dates can vary substantially, it is often not

possible to collect enough representative training data. In order to map the rice

production area on a regional basis and to cope with the variations in the rice

calendar, a method was developed which integrates both the change detection and

the neural network approaches. In this integrated method, the neural network

training data were extracted from the change detection results. With this approach,

the neural network was able to map rice fields over a much larger area, setting the

Table 2. Accuracy assessment for change detection, MLC, and neural network classification
methodologies.

Change detection

no filtering 363 gamma filter 565 gamma filter

rice non-rice rice non-rice rice non-rice

Rice 96.6 3.4 86.0 14.0 77.6 22.4
Non-rice 90.8 9.2 53.2 46.8 22.1 77.9
Average accuracy 0.53 0.66 0.78
Overall accuracy 0.69 0.73 0.78
Kappa coefficient 0.07 0.35 0.52

Maximum likelihood classification

no filtering 363 gamma filter 565 gamma filter

rice non-rice rice non-rice rice non-rice

Rice 92.8 7.2 85.8 14.2 81.2 18.8
Non-rice 13.4 86.6 3.2 96.8 0.1 99.9
Average accuracy 0.90 0.91 0.91
Overall accuracy 0.91 0.89 0.87
Kappa coefficient 0.79 0.77 0.73

Neural network mapping

no filtering 363 gamma filter 565 gamma filter

rice non-rice rice non-rice rice non-rice

Rice 90.9 9.1 97.4 2.6 99.2 0.8
Non-rice 6.1 93.9 0.4 99.6 0.0 100.0
Average accuracy 0.92 0.99 1.00
Overall accuracy 0.92 0.98 0.99
Kappa coefficient 0.82 0.96 0.99

Integration of change detection and neural network

no filtering 363 gamma filter 565 gamma filter

rice non-rice rice non-rice rice non-rice

Rice 87.4 12.6 95.5 4.5 98.9 1.1
Non-rice 3.1 96.9 0.4 99.6 0.1 99.9
Average accuracy 0.92 0.98 0.99
Overall accuracy 0.90 0.97 0.99
Kappa coefficient 0.79 0.93 0.98
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stage for operational implementation. The generalized processing steps of this

integrate approach are as follows:

1. create a change detection map from the RADARSAT-1 imagery;

2. generate random samples for rice and non-rice from the change detection

map;

3. on-screen editing to exclude outliers;

4. neural network training and classification using inputs of RADARSAT-1

imagery; and

5. perform accuracy assessment.

The results from this integrated approach were compared to those generated by the

other three methods, using the same test data. Figure 5(c) was used as the change

detection map. From this map, 2% of the samples were randomly selected. These

pixels were then edited on-screen, using the image as shown in figure 4(a). This

allowed pixels that fell outside of the rice fields to be excluded. The edited rice pixels,

along with the pixels identified as non-rice, were used to train a neural network with

the same structure and parameters as previously chosen. Figure 6(a–b) show the

results from this integrated method, where 6(a) is the result with no speckle

reduction applied to the RADARSAT-1 images prior to the neural network

classification. In figures 6(b) and 6(c), a 363 and a 565 gamma filter have been

applied prior to the mapping process. The accuracy assessment of the integrated

method is provided in table 2. The overall mapping accuracy of figures 6(a), 6(b),

and 6(c) was 90%, 97%, and 99%, respectively.

4.4 Rice mapping at a larger regional scale using the integrated change detection
neural network approach

A classification method which integrates a change detection and a neural network

approach provides a high level of accuracy, without the requirement for significant

ground data to train the network. To test the application of this integrated approach

at a larger regional scale, this method was applied to the entire area incorporating

both Muñoz and Santo Domingo. This integrated classification was run for both the

dry and wet seasons, thus testing the robustness of this approach under different rice

(a) (b) (c)

Figure 6. Rice mapping results from the integrated change detection and neural network
method. Pink represents rice and blue non-rice: (a) without a filter; (b) with a 363 gamma
filter; and (c) with a 565 gamma filter.
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growing conditions. The wet season runs from early June to early October. A colour

composite image of 5th July, 29th July, and 22nd August is displayed as red, green,

and blue in figure 7(a). According to the developed methodology, change occurrence

images were first created from the RADARSAT-1 images. These change images

were then combined to create a series of rice maps representing various planting

periods throughout the growing season. A final integration of these maps resulted in

a single rice map with a series of rice classes based on planting period.

(a) (b)

Figure 7. Rice map from change detection approach. (a) Colour composite of RADARSAT-
1 images with 5th July displayed as red, 29th July as green and 22nd August as blue. (b) Detected
rice fields. The colour codes indicate the planting periods of the rice fields.
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A 565 gamma filter was applied to all RADARSAT-1 imagery. The change

occurrence images were created from these filtered images using the ratio of the first

and last image acquisitions, as well as image pairs acquired 24 days apart. A 3 dB

threshold was applied to identify rice fields. Two sets of change images were created.

The first set of ratio images are from the RADARSAT-1 fine mode 3 (ascending)

acquisitions; the second set from the fine mode 1 (descending) passes. The ratio

images created for the wet season are given below:

Set 1: 1/9; 3/1; 5/3; 7/5

Set 2: 2/10; 4/2; 6/4; 8/6

where 1 to 10 represents the images acquired on 11th June, 23rd June, 5th July, etc.,

according to the list of acquisitions given in table 1. The ratios were calculated

according to equation (1).

Variations in planting dates across this large region meant that no single image

pair or change occurrence image could identify all rice fields. Therefore, rice maps

created from the same RADARSAT-1 orbit were combined. A further integration

of rice maps between the two orbits (set 1 and set 2) resulted in a single classified

image, with seven rice classes corresponding to seven planting periods.

Set 1:

1/9 AND 3/1 RA transplanted before 11th June

3/1 AND 5/3 RB transplanted between 11th June and 5th July

5/3 AND 7/5 RC transplanted between 5th July and 29th July

7/5 RD transplanted between 29th July and 22nd August

Set 2:

2/10 AND 4/2 R A9 transplanted before 23rd June

4/2 AND 6/4 R B9 transplanted between 23rd June and 17th July

6/4 AND 8/6 R C9 transplanted between 17th July and 10th August

where AND indicates a logical AND operation.

The seven planting periods (t1 to t7), in 12-day intervals, were extracted according

to the following logic.

A AND A9 R transplanted before 11th June ……….(t1)

A9 AND B R transplanted 11th June–23rd June ……….(t2)

B AND B9 R transplanted 23rd June–5th July ……….(t3)

B9 AND C R transplanted 5th July–17th July ……….(t4)

C AND C9 R transplanted 17th July–29th July ……….(t5)

C9 AND D R transplanted 29th July–10th August ……….(t6)

D R transplanted after 10th August ……….(t7)

For the wet season, the rice map generated by this change detection approach is

presented in figure 7(b). Seven rice classes, corresponding to the rice transplanting

periods, are represented on the map. For reference, a three-colour composite is

provided in figure 7(a). In the south-west region, bluish tones indicate that

the farmers planted their rice earlier in the wet season, while the farmers in the

north-east region delayed their planting by about two months. According to

the rice map, the rice calendar gradually shifts from south-west to north-east. The

majority of farmers however, planted their fields in July, in the middle of the

planting season.
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To train the neural network, two per cent of the pixels from these rice maps were

randomly selected and the outliers were excluded through on-screen editing. All

RADARSAT-1 images were used as input. The input of the network consisted of 10,

the output of 7, and the two hidden layers were 20 and 14, respectively. According to

the results from the test site, a 565 gamma filter provided the highest mapping

accuracy. However, considering the rice fields across the region are small and

narrow, a 363 gamma filter was used in this application to suppress the radar

speckle. A neural network with two hidden layers was used with 20 and 14 neurons

for the first and second hidden layers, respectively. Momentum was set to 0.9,

learning rate to 0.1, and learning cycle to 700. Figures 8 and 9 present the results of

the neural network classification for Muñoz and Santo Domingo. These maps

(figures 8(b) and 9(b)) identify the rice-cultivated land for the 2001 wet season. The

classes associated with the timing of rice planting are presented in figures 8(c) and

9(c).

For both seasons, the accuracy of rice field mapping using this integrated

approach was assessed on both a field and a regional basis. At the local level, the

classification accuracy of all 56 fields surveyed during the ground collection

campaign was assessed. At the regional level, rice acreage statistics were derived

from the classification and were compared with the statistics from the Department

of Agriculture of Nueva Ecija in the Philippines. These government statistics are

obtained through quarterly nationwide surveys. The sampling strategy for the

surveys involves a two-stage stratified sampling, with the barangay (a unit of local

administration) as the primary sampling unit and the farm household as the

secondary or ultimate sampling unit. The survey generates information on the palay

(unmilled rice) area, production, yield, feed and fertilizer uses, among other things

(PhilRice 2000).

At the local level, the overall classification accuracy for the rice fields visited

during the field campaign was 97%, for the wet season. For the dry season, the

accuracy was slightly lower at 96%. Table 3 compares the statistics derived from the

integrated mapping approach to the government statistics reported for both Muñoz

and Santo Domingo. The ratio of rice acreage to total acreage, for both the

government and classification estimates, is compared in this table. For the dry

season, the integrated approach produced very comparable results, to within 3% of

the government reported data. However, for the wet season, the integrated approach

overestimated the rice acreage (relative to the total acreage) by about 6% for the

Santo Domingo region. At both the local and regional scales, this integrated

approach was able to identify rice fields and also provided an accurate assessment of

rice acreage.

5. Predicting rice yield using a neural network

Rice classification maps are required for yield prediction. Two yield prediction

neural networks were developed using yield data acquired during the 2001 wet

season. Two sets of yield data were acquired; one set of yield data was acquired

during the field experiment by collecting sample data from the rice plots. The second

set of yield data are estimates given by farmers during interviews with government

officials. For some rice fields, the difference between these two yield estimates was

drastic. For example, the experimental yield data collected for field 2C2 was

5514 kg, while the farmer’s yield estimate for the same field was 7997 kg, a difference

of more than two thousand kilograms. The yield data measured for field 2A9 was
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10,197 kg, compared to an estimated 6250 kg, the field measurements nearly double
that of the farmer’s estimate. Experience during the 2001 dry season led to an

improvement in the yield data collection strategy during the following wet season

(a)

(b) (c)

Figure 8. Integrated neural network classification results of Muñoz for the 2001 wet season.
(a) A colour composite of 5th July displayed as red, 29 July as green and 22 August as blue;
(b) results from the first level classification with three classes: rice-growth area, no-rice land,
and water; (c) rice fields colour coded according to the period of planting.
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(a)

(b) (c)

Figure 9. Integrated neural network classification results of Santo Domingo for the 2001
wet season. (a) A colour composite of 5th July displayed as red, 29th July as green and 22nd
August as blue; (b) results from the first level classification with three classes: rice-growth
area, no-rice land, and water; (c) rice fields colour coded according to the period of planting.
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field campaign. Although the methodology was improved for the wet season data

collection by increasing the number of samples gathered within the plots, large

inconsistencies between the two yield estimates were still observed. Without further

evidence, it is difficult to independently determine the accuracy of either yield

dataset. However, by comparing the yield data collected from the rice plots with

radar backscatter, it was possible to identify and remove fields that, for this

experimental dataset, can be considered as outliers. These fields were identified

through an iterative multiregression analysis using the radar backscatter from all

RADARSAT-1 images and the yield data collected from the rice plots. Using the

backscatter associated with the seven planting periods (t1 to t7), there were seven

independent variables used in the multiregression analysis. After the first iteration,

samples with regression residuals greater than 1500 were removed. The threshold of

residuals was then set to 1000 and then to 600. After the second and third iterations,

47 and 30 field plots were retained and subsequently used to train the neural

networks. The networks trained with 30 plots and 47 plots were labelled as Net1 and

Net2, respectively. Both Net1 and Net2 used a two-layer neural network with a

6-12-2-1 structure. The inputs were backscatter values associated with the six

RADARSAT-1 images used in the neural network approach to rice mapping. The

output was the predicted yield for each plot. The training parameters were:

momentum 0.9 and learning rate 0.7. The network iteration was determined by

varying the number of iterations between 500 and 100,000. An iteration of 60,000

was finally selected as it provided the best training result and prediction dynamics.

The classes of rice cultivation (t1 to t7) derived from the integrated change detection

Table 3. Accuracy of rice field mapping using integrated approach compared to government
reported statistics.

Dry season,
2001

Statistics from Dept. of
Agriculture

Experimental results
(Estimated Acreage)

% Rice field mapped
A=B
C=D

� �

A B C D

Total land
(ha)

Rice area
harvested (ha)

Total land
mapped (ha)

Rice area
mapped (ha)

Muñoz
Integrated

approach
16,305 5,250.74 16,005.78 5,307.23 102.97%

Santo Domingo
Integrated

approach
9,569 6,177.07 9,258.95 5,840.45 97.72%

Wet season,
2001

Statistics from Dept. of
Agriculture

Experimental results
(Estimated Acreage)

% Rice field mapped
A=B
C=D

� �

A B C D

Total land
(ha)

Rice area
harvested (ha)

Total land
mapped (ha)

Rice area
mapped (ha)

Muñoz
Integrated

approach
16,305 9,358.39 16,005.78 9,343.52 101.71%

Santo Domingo
Integrated

approach
9,569 6,467.91 9,258.95 6,650.81 106.27%
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approach were used to generate a mask of rice fields and the yield was then predicted

for the region under the mask.

The prediction results were assessed using both ground data and the statistics

collected by the Philippine government, as previously described. To conduct the

comparison with the ground data, the mean yield for each field was extracted from

the yield prediction map produced from the neural network. It should be noted that

the predicted mean yield for a field could be quite different from the yield used

during the network training process for the same field. This is because the predicted

mean yield for a field is the average of the predicted yield of each pixel in that field.

The yield data used in the training process were the average of four ground samples

per plot. The discrepancies between the yield measured on the ground and the neural

network prediction are given in figures 10(a) (Net1) and 10(b) (Net2) for all of the

rice plots. The discrepancies between measured and predicted yield are depicted as

bars on these figures. Since the data were not sorted by the field numbers (rather by

the yields for unfolding the prediction dynamics), and due to the limitation of the

graphic size, not all the fields were explicitly displayed in figure 10.

The output yield data from the yield prediction model were grouped by 1000s for

the purpose of display and calculation of statistics. For the surveyed fields, when the

field average yield predicted by the model was compared to the yield data collected

during the ground campaign, 49% of the fields were predicted with an error under

500 kg/ha using Net1 (figure 10). Using Net2, 37% of fields had prediction errors

under 500 kg/ha. With an error threshold of 1000 kg/ha, the prediction accuracy

increased to 76% and 69%. Only 8% (Net1) and 12% (Net2) of fields had prediction

errors greater than 2000 kg/ha. The neural network trained with 30 plots performed

better than that trained with 47 plots. However, the yield predicted using Net1 had a

lower dynamic range relative to Net2, since more outliers were eliminated.

Rice yield was also predicted for the entire Muñoz and Santo Domingo regions.

The predicted yield maps for the wet season for Muñoz and Santo Domingo are

presented in figure 11(a–d). Figures 11(a) and 11(b) show the yield prediction results

from Net1 and figures 11(c) and 11(d) are the results from Net2.

For both regions, the rice yield predicted from Net1 and Net2, and the yield

reported by the Department of Agriculture in the Philippines, are presented in table 4.

The yield predicted from the neural network is categorized in ranges of thousands.

In each category, the mean yield was used in the calculation. The rice cultivated

land, predicted yield, and the distribution of the yield from each category were

calculated and are listed in the table. The totals from the neural network prediction

and from the government statistics are displayed in bold.

The distribution of predicted yield from Net1 for both Muñoz and Santo

Domingo was around 3000–6000 kg/ha, with more than 50% of the total yields in the

range of 4000–5000 kg/ha. This distribution is comparable to the distribution

reported in the government statistics. The average yields from the government

statistics were 4420 kg/ha (Muñoz) and 4550 kg/ha (Santo Domingo). The

distribution of predicted yield from Net2 was much broader, with 49% of the

fields in the 5000–6000 kg/ha category. Comparing predicted average yield to

the government statistics, the predicted yield from Net1 is about 6% higher. Net2

yield predictions were about 3% lower than government statistics. Thus, if average

yields over the region are considered, the neural network achieved a minimum 94%

prediction accuracy. The neural network performed well at predicting total tons of

rice and average yields (tons/ha) on a regional basis.
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6. Conclusions

The primary objective of this project was to develop a methodology to use

RADARSAT-1 imagery to effectively map rice production areas, to monitor rice

growth, and to predict rice yields. A substantial goal was to develop a rice

Figure 10. Yield prediction results for all rice plots. (a) Neural network trained with 30
samples; (b) neural network trained with 47 samples.
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monitoring system that would be capable of running operationally. From January

2001 to November 2001, two field campaigns were conducted in the northern part of

the province of Nueva Ecija in the Philippines, where the centre of the Philippine

Rice Research Institute (PhilRice) is located. To meet the project objectives, a

change detection approach was integrated with a neural network. This method was

then used to delineate rice production areas and also to extract information on rice

(a) (b)

(c) (d )

Figure 11. Yield prediction results for Muñoz and Santo Domingo. (a) and (b) results from
Net1, where the neural network was trained with 30 plots; (c) and (d ) results from Net2,
where the neural network was trained with 47 plots.
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cultivation as a function of different planting dates. These rice maps were then used

in a neural network-based yield model to predict rice yields on a regional basis.

The significant increase in radar backscatter over the short vegetation phase of

rice growth alludes to the potential of radar imagery for rice monitoring. The

multiple incident angles of RADARSAT-1 provide tremendous flexibility with

respect to image acquisition. In this paper, the relationship between rice growth and

radar backscatter was examined for both a dry and wet season. RADARSAT-1

imagery was acquired at a twelve-day interval over the study sites. Although rice

cultivation practices are different for these two seasons, an 8 dB increase in radar

backscatter during the vegetation phase was observed in both seasons. This

significant increase in backscatter provided the basis for rice field mapping.

The accuracies of four methods for rice mapping were compared. These methods

included a simple maximum likelihood classification, a change detection approach, a

Table 4. Predicted yield compared to statistics from the Department of Agriculture.

Wet season, 2001

Muñoz

30 training plots used (Net1) 47 training plots used (Net2)

Yield range (kg)

Predicted
rice fields

(ha)

Predicted
yield
(tons)

Distribution
of yield

(%)

Predicted
rice fields

(ha)

Predicted
yield
(tons)

Distribution
of yield

(%)

1,000–2,000 966.75 1,563.58 3.85
2,000–3,000 1.49 4.31 0.010 1,200.89 3,009.33 7.41
3,000–4,000 1,041.21 3,910.43 8.830 1,312.96 4,610.47 11.35
4,000–5,000 5,035.11 22,907.89 51.730 1,654.12 7,495.93 18.46
5,000–6,000 3,171.01 16,877.42 38.112 3,623.28 19,997.61 49.25
6,000–7,000 94.68 583.79 1.318 422.02 2,748.71 6.77
7,000–8,000 0.01 0.07 0.000 163.50 1,182.22 2.91

Totals from prediction 9,343.51 44,283.9

Average
yield

(tons)/ha21

9,343.52 40,607.85

Average
yield

(tons)/ha21

4.75 4.32
Totals from statistics 9,358.39 41,330.96 4.42 9,358.39 41,330.96 4.42

Wet season, 2001

Santo Domingo

30 training samples used 47 training samples used

Yield range (kg)

Predicted
rice fields

(ha)

Predicted
yield
(tons) %

Predicted
rice fields

(ha)

Predicted
yield
(tons) %

1,000–2,000 565.98 1,101.26 3.77
2,000–3,000 0.64 0.76 0.002 883.98 2,585.33 8.84
3,000–4,000 709.91 2,597.04 8.231 968.07 3,020.56 10.33
4,000–5,000 3,592.68 16,439.05 52.102 1,205.76 4,981.14 17.03
5,000–6,000 2,281.29 12,153.29 38.519 2,573.47 14,372.91 49.14
6,000–7,000 66.29 361.68 1.146 340.83 2,430.40 8.31
7,000–8,000 0.01 0.76 0.002 112.72 755.59 2.58

Totals from prediction 6,650.82 31,551.82

Average
yield

(tons)/ha21

6,650.81 29,247.16

Average
yield

(tons)/ha21

4.76 4.37
Totals from statistics 6,467.91 29,428.99 4.55 6,467.91 29,428.99 4.55

A neural network integrated approach for rice crop monitoring 1391



neural network classification, and an integrated approach. Rice maps were

generated for both the dry and wet seasons. With an integrated change detection

and neural network approach, a minimum mapping accuracy of 96% was achieved,

for both seasons. Rice yields for the wet season were predicted using a neural

network. The result was an encouraging 94% prediction accuracy when the yields

predicted by the neural network were compared with government statistics. Results

obtained from this study demonstrate the potential of radar imagery for wetland rice

crop mapping, monitoring, and yield prediction.
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